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Abstract. We consider a stochastic two-layer neural network of binary neurons in which 
the connections between the layers ace updated according to the Hebb rule, whereas the 
lateral connections in the output layer are modified according to an anti-Hebb rule. In 
equilibrium the output overlap is found to be a linear transformation of the input overlap. 
Next we extend the model by considering learning as a dynamic process, which means 
that synaptic efficacies as well as neuronal states may vary in time. Despite the coupling 
of these two variables, we show that in this particular model the behaviour can be well 
analysed. It turns out that the network filters the information available at the input in such 
a way that important components of the input data can pass through, whereas components 
with a IOW information content are suppressed. 

1. !!!!rOdRC?io!! 

The anti-Hebb rule has been studied in a variety of models with different objectives, 
e.g. the novelty filter of Kohonen [I], the unlearning principle of Hopfield [2] and the 
Boltzmann machine [3]. Recent studies [4,5] consider models of two-layer (input- 
output) networks in which the connections between the layers are modified according 
to the standard Hebb rule, whereas the lateral connections within the output layer are 
modified according to an anti-Hebb rule. In [4] the neurons are modelled as linear 
elements and the lateral connections are organized in a hierarchical way. Due to this 
architecture and learning process, orthogonal feature detectors arise. In [ 5 ]  the network 
considered consists of binary neurons which have symmetric lateral connections in the 
output layer. In the learning stage combinations of input-output patterns are clamped 
on the network. It turned out that in the operational stage an arbitrary input pattern 
gave rise to an output pattern that correlated with the learnt output patterns in the 
same way as the input pattern correlated with the learnt input patterns. In this way 
the network was able to interpolate linearly between a set of basic patterns. 

Because this property of interpolating linearly between stored patterns is interesting 
and possibly physiologically relevant, we generalize these results by studying a more 
general learning scheme and by introducing noise into the system. 

Next we study how learning takes place as an unsupervised dynamic process. In 
other words, during learning we do not clamp patterns on the output, but we let the 
network generate the output patterns as a result of the current connections and input. 
The generated patterns form the basis on which the connections are modified. Actually, 
the output layer is treated merely as a hidden layer. In the analysis of models with 
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hidden layers one usually encounters fundamental problems owing to the strong 
coupling between the state of the neurons and the connections in the network (the 
connections determine the state of the neurons, which in turn affect the connections 
because of the learning rule). Although there are some exceptions [6,7], it is generally 
very hard or even impossible to obtain analytical results. 

We will show that in the case of the interpolation model the behaviour of the 
system can be well analysed. This is possible because the statistical properties of the 
network are known. 
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Finally, we will discuss the relation of the model to physiology. 

2. Supervised learning 

In the model two layers are distinguished: an input layer containing N. neurons and 
an output layer containing N, neurons. The total number of neurons is denoted by 
N =  Nj+N,. The neurons are modelled by king spins: if si represents the state of 
neuron i, it either assumes the value +1 (neuron i fires) or the values -1 (neuron i is 
quiescent). The state of the input neurons and the output neurons will be denoted by 
the vectors sin and sou' respectively. 

The output neurons are mutually connected via synaptic couplings J O " .  In addition 
they receive input from the input layer via couplings 7". During the learning phase, 
specific patterns are clamped both on the input and on the output side. The input and 
output patterns are denoted by,y'"'u = 1 . , . p and ('"p = 1 . . . p.  respectively; p denotes 
the number of different patterns. 

We consider the following supervised learning scheme. When the input-output 
combination (x '" ' ,  e"') is clamped on the network, the values of the connections are 
modified according to the following learning rules: 

The first learning rule (1) is the standard (generalized) Hebb rule [XI applied to a 
two-layer network; the second learning rule (2) could be called an anti-Hebb rule. 

Let A,, denote the number of times that x(" '  has been clamped on the input at 

6"' has been clamped on the output. Then, assuming the initial values were zero, we 
can write the value of the connections after the learning process as: 

+La " - -~ +:-- nc C(I1) -.. rhn -..+-..+ --A 1-t I2 A r n n t n  thn +-to1 n7.mh-r nf t ;mec thslt L11V D11111S L l l l l c i  a* 5 "11 L l l b  " " L p . ' ,  all" ,I% Y*IL U..."LI <.IC L Y L U ,  L.Y..."I. ". L...."" *..U. 

Both A and B are p x p matrices; note that B is a diagonal matrix here. 
After the learning stage an operational stage is considered, during which a certain 

state sin is clamped on the input. The initial output state is chosen at random. Evolution 
in the network takes place by asynchronous updating of the output neurons with the 



Unsupervised dynamic learning in layered neural networks 422 1 

probability w, that sp"' will change its state (flips): 

w,(~O"')=f(l-gp(phPU'sPUI)) (3) 

where g ( x )  is an arbitrary odd monotonically rising function of x, which is hounded 
by -1  and +1 and for which g'(0) = 1. Examples of such functions are tanh(x) or 
erf(&x/2). At this stage we will not yet assign a specific function to g. hp"' represents 
the total post-synaptic input (PSP) of output neuron i and consisfs of the contributions 
of the input and output neurons: 

N .  Ni 

hp"'= 1 JTsp"'+ 1 J:;sF, (4) 
j = ,  k = l  

Finally, p = l /  T, the temperature T being a measure of the amount of noise in the 
system. 

In order to analyse the system at a macroscopic level, we introduce the overlap (or 
correlation) parameters [9]: 

( 1 1  where we have adopted the notation xk = (,yvJ,. . . , xy'), 5, = (6, , . . . , C j p J ) .  Taking 
n = N ; / N , ,  the PSP hp"' in (4) can now be rewritten as 

I n  appendix A it is shown by taking the limit N,+m, n and p fixed, that the dynamic 
behaviour of the model is governed by the nonlinear autonomous differential equation: 

d N" ( [ A m - - B q ] )  1 
- q  = - q +  lim - &g p&. - 
d t  N.-m No i = l  n + l  n f l  

Although B is a diagonal matrix having only positive elements, in the following it is 
sufficient for B to be symmetric and positive definite (thus invertible). 

In the limit p + m any choice of g boils down to the sign function. If the contribution 
of the input neurons is considered as an external field, the energy function of this 
system has the same form as the Hamiltonian of an king spin system: 

N Nc,  N o  N" 

E = - ' X  2 1 sp"'J7sSp"'- 1 sy( 1 J:gs:) .  

To simplify the equations, we define m'= nB-'Am and x = q - m'. Neglecting a 
constant, we can write the energy: 

' = , , = I  , = I  k = l  

It is known that under the T=O dynamics theenergy will decrease to a (local) minimum. 
Now we will show that E decreases to the global minimum 0, if some conditions are 
imposed on the input overlap m. Using ( 6 ) ,  differentiation of E with respect to 1 yields 
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In order to obtain a proper characterization of the equilibrium solution, it is convenient 
to work with the partition method as introduced i n  [IO]. The set of all indices is No 
is divided into subsets I ,  defined by  
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1, = ( i s  NJCf = 11). 

The mean activity of the neurons in subset I ,  is given by 

For the correlation q(soy') it holds that 

q ( s Y  =1 v P p s 4 ~ ( ~ o y ' )  
.I 

where p ,  = \ I , l /N ,  denotes the fraction of indices that belong to subset I , .  If the 
output patterns are randomly drawn from a certain distribution, p., corresponds to the 
probability that i E I,. 

Since by definition all Iqs lS  1, equation (8) clearly demonstrates that all vectors 
q(s"" ' )  are contained in a (p-dimensional) limited space, which we will call D. The 
shape of D is determined by the quantities pn which in turn depend on the particular 
choice of the output patterns. 

In fact, any vector " E R P  can be written in the form m ' = z ,  qp.,m;, although 
this does not necessarily imply that all Imkl- < 1. But if the latter condition has been 
satisfied, then m' is an element of D. which means that m' can be represented by 
q(s""').  In other words, an output configuration so"' exists such that q(sO"' )  = m'. 

Applying the partition method to (7), we get 

d 
- E = - 2 E  - x p , l q  .VE/ ( l+m;  sgn(q.VE)) 
d t  .I 

If m'E D, that is, if all I m ; / s  1, then 

d 
- E  G -2E.  
dt (9) 

Combining (9) with the fact that V x Z  0 :  E > O  (since B is positive definite), it follows 
that E + 0, which means that x + 0, and consequently q + m'. So, provided that 

m E { r e  DI nB- 'Az€  D )  (10) 

q = nB-'Am. (11) 

the equilibrium solution of (6) is: 

Note that condition (IO) prescribes that the right-hand side of (11) must be within 0, 
the space of vectors attainable by q(s"" ' ) .  If this condition is not satisfied, equation 
(11) does not hold, since the right-hand side yields a result that cannot be represented 
by a correlation parameter (for instance values larger than 1).  Throughout the rest of 
this paper, we will assume that m is such that condition (10) is always satisfied. 

There are several remarkable aspects about equilibrium solution (11). First of all, 
the output correlation q appears to  be a linear transformation of the input correlation 
m. This is surprising if one takes into consideration the fact that the network is composed 
of binary neurons and that there is no noise in the system. Secondly, the solution does 
not depend on the initial output state! nor does it depend on the choice of the patterns; 
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for instance, they need not be uncorrelated. Another remarkable aspect is the presence 
of the inverse of B, which yields interesting features. For instance, if during the learning 
phase input-output combinations of the form (x'*', g'") have been presented to the 
network for every /A just once, both A and B will have become p x p  identity matrices. 
Consequently, the equilibrium solution will be q = nm. If, hereafter, for instance, 
input-output combination ($", 6'") is presented once again, both A and B will 
change, whereas the equilibrium solution will remain the same because of the rescaling 
property of the inverse operation. In general, this implies that the number of times 
that input-output combinations (x'''', g c p ' )  are presented to the network does not affect 
the T = 0 equilibrium solution, although the connections in the network do change. 

Utilizing our knowledge of the equilibrium solution at T = 0, for small T we can 
follow a perturbation-theoretical approach by trying a formal expansion of q with 
respect to T :  

q = qo+ Tq, + T2q,+. . , 
qa is given by (11). Substitution of this expansion in ( 6 )  yields: 

q o + T q , i T 2 q , +  ...=- 

At this point the usual step is to perform a Taylor expansion of g in the neighbourhood 
of &Bq, / (n+  1)  and collect all terms of the same order in T. This results in a recurrence 
relation for q, ( 1  = 1,. . .). So, to proceed it is necessary to assign a function to g. For 
convenience, we opted for the semi-linear function: 

If m is not too large (the particular boundaries will be specified later), g can be 
regarded as linear, and we find the recurrence relation 

1 q, = -- 
n + l  

where the correlation matrix Q is defined by 

Q&+ I 

The resulting series for q, the convergence of which is controlled by the magnitude of 

q =  n [ l + T ( n +  l )K 'Q- ' ] - 'B - 'Am (13) 

( I  denotes the p x p  identity matrix). 
By direct substitution of (13) in equation ( 6 ) ,  one can readily verify that (13) holds 

for general T, provided that m is such that Z, I( Q- 'q)@l< I .  The latter restriction must 
be imposed because the argument of g may not extend beyond the region where g is 
linear. Note that the T = 0 solution is also contained i n  (13). 

At the microscopic level, however, there is a fundamental difference between T = 0 
and T > 0 when equilibrium has been reached. At T = 0 there will be no more spin-flips 
once the network has reached an arbitrary configuration so"' for which q ( s ' " ' ) =  
n K 1 A m .  On the other hand, a system with some noise ( T  z 0) will perform a sort of 

can be evaluated: 
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random walk in configuration space through the plane of all so"' for which q(s"" ' )  
satisfies (13). This enables us to define the average configuration (so"'). In appendix 
A an expression is derived which connects the average configuration with the output 
correlation and the learnt patterns (see (31)): 
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(sy)=&' 4-14. 

This quantity will play an important role in the next section. 

3. Learning as a dynamic process 

In the previous section a clear distinction was made between the learning stage and 
!he opcra!iani! s!age. !E the !ezrning stige !he cnnnec!ions were zdj~sted whi!e both 
input and output layer were forced into an activity pattern. In the operational stage 
the connections were fixed while the neurons could freely change their states as a 
result of these connections. In this section we will drop the strict distinction between 
the two stages and consider a system in which learning and operating happen in an 
integrated way. After initializing the connections, we will no longer force the output 
into a pattern, hut allow the network itself to generate the output patterns which in 
turn serve to update the connections. 

The essential (and probably plausible) assumption we make is that the values of 
the connections change on a much larger time-scale than that on which the neurons 
change their states. With regard to the Hebbian mechanism, this implies that the 
condition for synaptic enhancement is not simply the conjunction of pre- and post- 
synaptic activity, but that a correlation between pre- and post-synaptic activity over a 
certain period of time is required [ 111. Furthermore we introduce a decay factor S to 
prevent the connections from unbounded growth [l ,  6,7, 121. Expressed as  a formula: 

with E a small constant representing the learning rate and T a certain period. It should 
he noted that equations (14) and (15) are in fact generalizations of equations (1) 
and (2). 

Suppose !hat at f = 0 the initial connections are given by 

A'and Bo may he arbitrary matrices, although Bo is restricted to the class of symmetric 
and positive definite matrices. For simplicity we take both input and output patterns 
mutually uncorrelated. 

During the following process, a large number of input configurations is presented 
at the input. We assume that there is some noise present at the output as well as at 
the input, but we will take the correlation of the input configurations with the learnt 
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input patterns, m ( t ) ,  to be constant during a period T, which is much larger than the 
time needed for the network to reach equilibrium. If r is large enough, the average 
over T may be replaced by the average as  computed in appendix A, equations (31) 
and (32). This leads to 

If the parameter E is relatively small and the number of times that connection 
modifications take place is large, we can approximate the difference equations by a 
system of differential equations. The expectation value of the connections at time t 
can then be written as 

with A(t)  and B(1)  given by the differential equations 
d 

A(0) = A’ 

B(0)  = Bo. 

- dl  A,, = SA,, 

d 
- BSv = %q. - SBPu dr 

- 

Recalling (13), the expression for q as a function of m, and the orthogonality of the 
output patterns ( Q  = I ) ,  we get after rescaling the temperature f = ( n  + 1) T 

A(0)  = A o  

B ( 0 )  = Bo. 

d 
- A =  n a [ B t  f I ] - ’ A M  -SA 
dt  
d - B = n 2 & [ B +  ?1]-’AMAT[ B+ ?I] - ’  - SB 

(19) 

dt  
Here M denotes the covariance matrix of the input defined by M,.,=”,. Note that 
by definition M is semi-positive definite. For the time being, we will assume that M 
is also invertible (thus positive definite). 

Since the system of equations (19) describes two coupled nonlinear differential 
equations for p x p  matrices, an analytical expression for A and B at any 1 is hard to 
find. In order to get rid of the inverse operations, we introduce matrices C =  
n[ B+ ?l]-’A and V -  [ B + ? I ] - ‘ ,  leading to the system of equations 

d 
- V = S V - ? 8 V 2 - & V C M C T V  (20) dt  

& -‘I CTC - n l +  T- M 

Though still coupled, these equations are much more suitable for numerical integration, 
Note that C represents the transformation (13) of the input correlation m ( Q =  I ) .  

As we demonstrate below we are interested in the matrix .Z= C’C rather than C 
in particular. Since it is still very difficult to find a closed form for Z( t ) ,  we will confine 
ourselves to finding the stationary solution 2 analytically (see appendix B). It appears 
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that 2 commutes with M ,  which implies that .?? and M can be reduced to the diagonal 
form by the same base transformation. Let the eigenvalues of M be arranged in 
increasing order ( p a  w 2 S . .  . < pp).  Transformed to a diagonal matrix, Z acquires 
the form (see (41)): 

H I  J Jonker and A C C Coolen 

" 

So, if the temperature ? is chosen larger than the critical value n~p,,/G, all eigenvalues 
of 2 are zero, representing the case where all information has been lost in the system. 
If f is chosen below nepL, /6 ,  all eigenvalues differ from zero; in this case!he p-degrees 
of freedom present in the input space are all conserved. If the value of T is gradually 
raised, eigenva!ues of 2 successive!y becarr-e zero 2nd degrees cf freedom  re !os!. 

It is interesting to analyse the stationary form of the output covariance matrix i.e. 
q,,q. (see appendix B). Reduced to the diagonal form, not necessarily by the same 
base transformation as that applied to M and Z, the output covariance matrix reads: 

- 

n 
k? 

w ,  -- 
nE 

I 

So the eigenvalues of-the output covariance matrix can be determined by the following 
procedure. Subtract T 6 / n ~  from an eigenvalue of M; if the result is positive, one finds 
the corresponding eigenvalue of the output covariance matrix by multiplying the result 
by n ;  if the result of the subtraction is negative, then the eigenvalue is zero. 

4. Numerical experiments 

There are three suitable ways of studying the model, each involving an increasingly 
higher level: first of all, by carrying out the actual simulations at the microscopic level; 
secondly, by repeatedly numerically integrating the flow equations (6) for the order 
parameters and modifying A and E ;  and lastly, by numerically integrating the system 
of differential equations (20) and (21). Before we describe each method in detail, 
quantities must be found which enable us to compare the different methods with each 
other. As we will see, appropriate quantities are , N , ~  

N,, ,=I 
p B  = - - (sp"')l"'(sp"')'PI (22) 
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i.e. the correlation between the average pattern (so"')'", which is the result of an input 
correlation mfLI1, and ( s ~ " ~ ) ' ~ ' ,  the result of mi''. It is most convenient to choose m(=I 
and m(" proportional to the unity vectors, mF'- S,,,, mLp)- a,,, with a = 1 . . . p ,  
P = a  . . . p .  

The recipe for a simulation is as follows. First of all, choose matrices A' and Bo 
and initialize connections according to (16) and (17). To commence the actual simula- 
tion, draw a vector m from a distribution characterized by covariance matrix M. Next, 
let the network evolve to equilibrium according to an asynchronous updating process 
(3) with T>O. Continue this process after equilibrium has been reached. In order to 
determine the average configuration, take once in a while a 'snapshot' of the system, 
that is, store the current configuration. Afterwards the average activity pattern can be 
computed by summing all configurations stored and dividing the result by the total 
number. Obviously the larger the number, the better is the approximation of the 
theoretical average (31). The next step is t o  update the connections according to (14) 
and ( 1 5 )  with application of (30). Then draw another m etc. 

Analysis of the network at certain times is performed by presenting the network 
input configurations with correlations m ' = )  and m(" proportional to the unity vectors 
and by subsequently computing the corresponding average configurations. Hereafter 
the quantities of interest P p  are calculated by means of (22). The connections are not 
modified during analysis. 

The second method involves the macroscopic level. After A' and E D  have been 
chosen, a vector m is drawn from the distribution with covariance matrix M. The next 
step is to numerically integrate the flow equation (6) to find the equilibrium solution 
of q as a result of m and the current values A and E. Once equilibrium has been 
reached, A and B are modified according to (18). Then another m is drawn, etc. 

The values of rep  are measured by studying the output correlation in equilibrium 
q'"' which results from m'"', a = 1 . . . p.  The quantities rep are calculated using (22) 
and (31) with Q = I: 

The third method consists of numerically integrating the system of equations (20) 
and (21). This method can be compared with the previous methods by calculating the 
quantities r y p  which follow from equations (23) and (13): 

= m l " l ~ T ~ m ( P I L  - m  (4 Zm'pl 

So if ml* '  and m'B' are taken proportional to the different unity vectors, r"O are 
proportional to the elements Zmp of the matrix Z. 

We performed two different experiments, each according to the three methods 
described above. For simplicity we chose p = 2 .  In the figures the values of r", r" are 
depicted as a function of time. The values of r22 have been omitted because they do 
not provide extra information: due to the choice of M, in the experiments the values 
of r22  are the same or virtually the same as the values of 1" .  In  both series of experiments 
the input vectors m were drawn from a distribution with a covariance matrix as given 
in table 1, having eigenvalues @, =0.08 and p2=0.18. The learning rate was E =0.25 
and the decay 8 =0.02. The layers consisted of an equal number of neurons ( n  = I ) .  

In our interpretation of the results we will use the following terminology. By event 
a we mean the presence of input configurations having a correlation with the input 
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Table 1. lnitial values and the covariance matrix M of the input data. 

Experiment A0 BO M 

1 (0.75 0.25) (1.00 0.00) (::(I; ::O;) 
2 (5.00 0.00) (5.00 0.00) (0.13 0.05) 

0.25 0.75 0.00 1.00 

0.00 5.00 0.00 5.00 0.05 0.13 

patterns given by m'"'. Furthermore, we will call the resulting average output configur- 
ation, (so"')'m), the internal representation of event a. 

,-.L-c-"* 2 ......., C" ..--- *,-,-->,,I.,, ... ̂ . - - 1 . i . _ n . .  a o - - >  no ... ~ > ~ ~ . ~ .  
111 LLLC ~ U D L  cnp~rrirrcir~ ( I I ~ U I C ~  i ( u /  aim L \ v / /  w c  LUUK 1 =".I;  n aiiu D arc givcn 

in table 1. Initially, the networks ability to distinguish event 1 from event 2 is rather 
poor, as the corresponding internal representations are largely correlated. ( rI2 is about 
the same as r ' l ) .  However, as time proceeds, the networks ability to discriminate 
between the two events improves and eventually the internal representations are almost 
orthogonal ( rI2  is much smaller than r ' l ) .  

In the second experiment (figures I (c)  and I(d))  the converse happens. We raised 
the temperature to f = 1.1 and started with A" = Bo = 51 (see table 1). So, initially, the 
internal representations are completely orthogonal ( r '*  = 0.0). During the learning 
process, however, there is a gradual loss of the ability to distinguish event 1 from 2. 
In the end, the system can no longer discem whether event 1 or 2 happens ( rI2  = r") .  
This clearly demonstrates how information present at the input is lost at the output. 
L l l C  JlrlarrrJl~r~,r;lr"olu="ur ' " I ,+ , ,  L J  " F l U W  111s CI111L'll Y 'WUG I", r l L  - " . U O O d l l U  L,,C,C,U,C 

a degree of freedom is suppressed by the system (i.e. the direction of the eigenvector 
that corresponds to p , ) .  This should be contrasted with the first series of experiments, 
in which eventually the input information is represented at the output in a form that 
is almost unaffected by the network. 

It appears from the experiments that method 2 and 3 are in good agreement. The 
network simulations, however, show systematic deviations, suggesting that there is 
more noise in the network than expected. This is due to finite size effects as well as 
to the practical impossibility of measuring the average configurations without error. 
Since these serve to update the connections, it is  crucial to determine them in good 
approximation, otherwise artefacts may occur due to the cumulation of errors. On the 
other hand, increasing the number of samples makes the simulations very time consum- 
hg. A possible way (noi applied iii the siiiiii:a~oiis preseiiied here) io joke ihese 
problems is to restrict the analogue depth of the connections, but we will not elaborate 
on the technical details as this goes beyond the scope of this paper. 

- 
Thalllllnlt -: I . . -  -F R I  .. :-!--! *hec-:*:..-1 ..-#..- T E  ,-- - n  n o 0  -_-I .L---c--- 

5. Discussion 

We have considered a two-layer network consisting of binary neurons. First we studied 
a supervised learning stage in which the connections were modified according to the 
learning rules (1) and ( 2 ) .  With regard to physiology it  is interesting to submit learning 
rule (2) to closer inspection. Due to the minus sign one often refers to it as an anti-Hebb 
rule, implying the reverse of the Hebbian mechanism. A different interpretation is 
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possible. According to the Hebbian mechanism for synaptic modification [ 131, a synapse 
increases its synaptic efficacy if there is synchronous or  correlated activity between its 
pre- and post-synaptic neuron. This implies that if the pre-synaptic neuron is of the 
inhibitory type and its synaptic efficacy increases, the synapse becomes more inhibitory. 
Therefore in the abstract formulation of the Hebbian mechanism a minus sign automati- 
cally appears in the case of a pre-synaptic inhibitory neuron. So if we compose the 
network such that the input neurons are all of the excitatory type and the output 
neurons of the inhibitory type, we only need one general learning rule based on a 
Hebbian mechanism, which leads to equations ( I )  and (2). Although we are inclined 
to favour one general principle rather than two distinct mechanisms, the hypothesis 
of modifiable inhibitory synapses does not correspond to the general belief expressed 
in physiological literature that synaptic plasticity applies solely to excitatory neurons 
114, IS]. A reason for this is that experimental data so far have demonstrated Hebbian 
kind of modification solely for excitatory synapses. It is difficult to tell whether this 
is due to a lack of experimental data or whether this is a basic property of biological 
networks. In any case it is likely to be much more difficult to perform an experiment 
designed to demonstrate the modifiability of inhibitory synapses. 

The behaviour of the interpolation model when subjected to a supervised learning 
stage appeared to be characterized by the linear dependence of the output overlap on 
the input overlap. This property could be relevant for a biological system since it could 
serve to represent a continuous multidimensional quantity in a network. In  addition 
it could serve to transfer sensory information to deeper levels in the brain for further 
processing, without affecting this information. It should be stressed that the network 
behaves linearly at the macroscopic level whereas the constituent elements are very 
nonlinear. 

Since from a physiological point of view it is probably more plausible that neuronal 
states as well as synaptic efficacies are variable in time and that the system is not 
subjected to a supervisor, we considered an unsupervised dynamic learning process. 
Despite the complicating factor of the strong coupling between the two types of 
variables, the behaviour of the network could be analytically well described. Apparently 
the network acts as a filter for the information presented at the input. Eigenvectors of 
the input covariance matrix which correspond to an eigenvalue below a critical value 
are suppressed by the system. This critical value can be controlled by setting the system 
parameters, i.e. the internal noise rate T, the learning rate against decay, and the 
relative magnitude of the layers. Interestingly, this manner of processing a set of data 
complies with the well known method of principal components 'analysis [4, 16-18]. 
There, one also computes the eigenvalues of the covariance matrix of the input data 
because the component (eigenvector) that corresponds to a larger eigenvalue is expected 
to possess a higher information content. The model we described does not perform a 
principal components analysis, but performs data reduction by suppressing all com- 
ponents that have an information content below a critical value. Physiologically such 
a system could be very useful for pre-processing the large amount of available sensory 
data, so as to extract the relevant features and neglect the unimportant details [18]. 
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Appendix A. Derivation of the flow equations 

We will try to derive equations for the flow of the order parameters qr according to 
the method proposed in [19]. Let p(s""', t )  denote the probability of finding the output 
of the system at  time f in the state so"', For notational convenience we will omit the 
superscript 'out' from sou'. The master equation for p ( s ,  1)  is given by 

' 

J Nc, ". 
- P ( s ,  f ) = -  1 S ( S ) P ( S ,  f ) +  1 Y(F:s)P(F;s ,  0 
J f  i = ,  /=, 

where w, is defined by (3) and F, is the spin-flip operator 

F;(s,, . . . , si,. . . S N , )  = (s,, . . . , -si. . . . S N , ) .  

P(q, fj=I S ( q - q ( s ) ) p ( s ,  1) .  (24) 

The probability that at time f the output state s will have overlap q ( s j  = q is: 

Our purpose is to find a differential equation for the distribution P(q ,  I )  using the 
master equation. In the limit No+ a?, p fixed, one finds: 

where Y(q) is an arbitrary test function. Assuming there is no uncertainty in q ( O ) ,  the 
initial value of the output correlation, the solution of ( 2 5 )  is 

(26) P(q, 0 = S ( q  - 4*(f)). 

The equation for the flow itself becomes 

The consequence of ( 2 6 )  is that any quantity r ( s )  which can be written as r ( q ( s ) )  
is deterministic. Its value at time I is simply r ( q * ( f ) )  without any fluctuation. But a 
still more detailed result can be obtained. 

Define the average of r ( s )  over all possible states s by 

( r ( s ) ) = 1  r (s )p (s ,  1). (27)  

In addition, we define an alternative average, namely the value of r ( s )  averaged over 
every s that satisfies q ( s ) = q :  
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With use of the master equation expressions can be also found for the expectation 
value of an arbitrary quantity r ( s ) .  Differentiation of ( 2 7 )  with respect to f produces 
d N" 

- ( r ( s ) ) =  1 ( w , ( s ) [ r ( F , s ) - r ( s ) l )  
dt  I = ,  

N" ", 
= f  X ( d e s ) -  r ( s ) ) - t  X g(phY" ' ) (s , r (es ) -s , r (s ) ) .  (29) 

Note that we have applied (28) and that we have made use of the fact that g is an 
odd function. We will use (29) to compute (s,) in equilibrium. It follows that 

I = ,  I = ,  

d 
-(si) = - ( ~ ; ) + g ( p h ? ' ) .  
dr 

Hence, the equilibrium value of  (s,) is given by 

(sa)= g(Php"'). 
Similarly, (sis,)(i # j )  can be found: 

d 
- (s;sj )  = -2( s~s,) + (Sjg(0hpu')) + ( S j g ( P h Y ) )  
d t  

(~~s~)=~(s~)g(phgU')+f(s~)g(phpY')=(~~)~ (s,). (30) 
Note that this result has been derived without assigning a function to g. Taking g 
according to (12) and using (6) and (13). we find for all i # j :  

(SO=&. Q-'q (31) 

(sisj)=&. Q - ' q t j .  Q-'q (32) 

I.. "-..:,:L-:..... . .I_ c-2  F-- :a 2 
111 C'IU"1U"UL" w s  ,,,,U ,U' 6 ' J  

provided that q is such that E+ l(Q-'q)+/S 1. 

Appendix B. Matrix equations 

In the derivation of (11) and (13) it was important that B was positive definite. To 
check whether B remains positive definite during the learning process,we introduce 
the dummy variable B* = B exp( 8t) and find by (19) 

d 
- E* = E e6'CMCT. 
d l  

The matrix on the right-hand side is at least semi-positive definite since for all vectors 
x: x .  CMCTx = CTx.  M C T x  2 0, because by definition M is semi-positive definite. 
Consequently, B will remain positive definite if Bo is positive definite. This implies 
that V, which is defined by V = ( E +  TI)-'  and which commutes with E, can only have 
positive eigenvalues. Therefore V is invertible. Similarly one can prove that both B 
and V remain symmetric. 

Using dV/dt=-V(dB/dr)V,  we find 

(33) 
d 
- V = ~ V - % V * - E V C M C ~ V  
dr 

E 1 C T C - n I + T - M - '  . 
d t  

(34) 
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A useful identity follows from (19), namely: 

nEEM = s e  (35) 
where the notation indicates that we are dealing with a critical point. Applying (35), 
we find that the critical points of (33) and (34) satisfy 

Recalling that 6 is symmetric, we find by virtue of (35) that the matrix of interest 
2 = kTC commutes with M :  

Therefore 2 and M can be reduced to the diagonal form by the same base transforma- 
tion. From (37) it follows that an eigenvalue of Z can assume two values: 

where pi indicates eigenvalue number i of M. Note that z, = 0 alway? holds, whereas 
the second critical value is only valid if p, > f S / n E ,  since by definition Z is semi-positive 
definite (x .  CTCx=/Cx12rO). 

,With regard to the :tability of the critical points, we consider small perturbations 
C = e + pC' and V =  V +  pV' ,  p + 0. Tedious but straightforward calculation yields 
the linearized equations ( p  + 0): 

The latter equation exhibits no V' dependence. Furthermore it follows from (38) that 
if C ' +  0, then V'+ 0 because S > 0. Hence the stability of the system depends solely 
on (39). 

The stability of the extreme case e =0, 6= ?-'I can be checked easily. One finds 

P + O  

implying stability if n a M / f - S I  is negatiLe definite, that is, if al! pLi< i%s/n~. With 
regard to the other extreme case, = n l -  TSE- 'M- '  and-all yi > T S / n a ,  we consider 
perturbations on 2, Z = i + p Z ' + 0 ( p 2 ) ,  where Z'= C"C+CTC': 

P - 0  
d 
d t  n 
- Z' = -s [ 2 Z , +  Z ' i ]  + O ( p )  

the solution of which is given by 
z ' ( f )  = e-'"/"'i,z'(0) e - ' a / n i i r  

Clearly ,?? is stable, since in this case all eigenvalues of are positive, as stated 
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But what happens in the intermediate cases? Suppose zk = 0 but w h  > %s/nE.  We 
will prove that this solution is not stable. Therefore, consider the direction e,, i.e. the 
eigenvector of M that corresponds to the eigenvalue p k .  By (39) and (36) we get 

Since ,C’ can be chosen arbitrarily, we take C’ such that C’ek is in the kernel of eeT, 
i.e. CCTC’ek = 5 !t is always possible tofind such a direction since the spectrum of 
eigenvalues of CCT is equal to that of C’e. Equation (40) reveals that the critical 
value zk = O  cannot be stable if 

which possesses 
eigenvalues given by: 

> fas/ne. 
Summarizing, the only possible equilibrium solution is the matrix 

z, = o  for l s i < k  

for k c i c p  
(41) f a  z =n-- 

E l l !  

where k is the index of the smallest eigenvalue of A4 that satisfies p k  > fa,” (p, f i2S 
. . . e pp).  0 

Finally, we analyse the covariance matrix of the output: 
- 1-  

qWqv = 1 C,,nm,m,~.,, = ( e ~ e ~ ) , , , .  
”r 

Consider the vector e ; -  e e k ,  where ek is an eigenvector of Z (and consequently of 
M )  corresponding to an eigenvalue zk # 0. One finds 

Since the rank of e M e T  is equal to the rank of 2, the remaining eigenvaLues must 
be zero. So the eigenvalues of the output covariance matrix are n ( p k  - TS/ne)  if 
f i x >  f t i / n e ;  otherwise they are zero. 

e M e T e ;  = pkz ,e : .  
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